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Abstract

In this paper, I am interested in the study of the inverse Cauchy boundary value problem for
the time-fractional diffusion equation in two layers spherical domain. Given the data in the
first layer, my goal is to recover the temperature distribution and the heat flux in the second
layer. First, I prove that the problem is severely ill-posed in the Hadamard sense. After, |
propose a truncation-type regularization approach enabling us to achieve Holder-type error
in L%-norm between the regularized and exact solutions.
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1 Introduction

The inverse heat conduction problem (IHCP) has a very long-life history and has investigated
by numerous researchers in recent decades. The problem comes from the practical situation
that it is sometimes necessary to determine the temperature or heat flux on the surface of
a body from a measured temperature at some fixed locations inside the body. Thus in this
problem, one needs to recover the temperature and heat flux on an inaccessible portion of the
body from the measurements on an accessible portion of the body. Theoretically speaking,
it is well-known that the IHCP is an ill-posed problem in the sense of Hadamard. Unlike
well-posed problems, standard numerical methods applying to ill-posed problems may fail
to truly describe its solution due to its instability. As a result, there are many interesting
regularization methods was proposed to deal with this kind of problem. For the IHCP in the
single-layer material (S-IHCP), the literature is very abundant. For example: Carasso (1982)
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applied the well-known Tikhonov method to regularize the IHCP. Later on, Eldén (1987a,b)
used the modified equation method to obtain a stable Holder approximation to solution of
IHCP. Other regularization methods which were designed for the S-IHCP can be found in
Fu and Qiu (2003), Fu et al. (2005), Qiu et al. (2003), Seidman and Eldén (1990), Reginska
(2001), Regiriska and Eldén (1997), Cheng and Zhao (2020), Qian et al. (2007) and Ranjbar
and Eldén (2014) which includes the optimal filtering method (Seidman and Eldén 1990),
Wavelet—Galerkin method (Regiriska 2001; Regifiska and Eldén 1997), wavelet method (Fu
and Qiu 2003; Qiu et al. 2003), modified method (Cheng and Ma 2017; Qian et al. 2007) and
Fourier method (Fu et al. 2005; Khieu et al. 2019).

A composite material is a material consists of two or more separate materials with signifi-
cantly different physical or chemical properties that, when combined, produce a material with
characteristics different from the individual components. It is well-known that the composite
materials have been used for a wide range of industrial applications nowadays, including
piping, pressure vessels, fluid reservoirs, aerospace components, and naval structures (see
Pavlou 2013; Kayhani et al. 2012 and the references therein). Recently, the heat conduction
in composite material has attracted many researchers. For example: Berger and Karageorghis
(1999) investigated the application of the method of fundamental solutions (MES) to two-
dimensional problems of steady-state heat conduction in composite material with linear
boundary conditions. Later on, Karageorghis and Lesnic (2008) extended the work in Berger
and Karageorghis (1999) to the case of nonlinear boundary conditions. In Jain et al. (2010),
Jain et al. proposed an analytical study on the solution of the transient boundary-value prob-
lem of multi-layer heat conduction in the spherical coordinates. Niu et al. (2014) studied the
inverse problem of determining the inner boundary location of heat conduction composite
walls from the measurement data of temperature and heat flux on the exterior boundary. The
problem is ill-posed and hence, the author applied well-known Tikhonov regularization tech-
nique to obtain a stable and accurate numerical approximation of the moving boundary. Very
recently, Xiong et al. (2016) investigated the spatial inverse problem for a radially symmetric
inverse heat conduction equation in a two-layer domain. The author considered a two-layer
sphere domain, where the data is given in the first layer and from this data, the goal is to
reconstruct the temperature distribution in the second layer. This problem is ill-posed in the
sense of Hadamard and hence, they applied the classical Tikhonov regularization method
to overcome the ill-posedness. It is noted that the boundary condition of the investigated
problem in Xiong et al. (2016) is linear boundary condition of Neumann type.

While there are many interesting results on the direct inverse problems in the heat conduc-
tion in composite material with classical derivative, the literature on its fractional counterpart
is still very limited. To the best of our knowledge, we didn’t find any study concerning on the
inverse heat conduction problem for fractional diffusion in composite material (FC-IHCP),
even in the case of linear boundary condition (Dirichlet or Neumann boundary condition).
Motivated by this and inspired by the above mentioned work, in the current paper, I am
interested in investigating the fractional inverse Cauchy problem for the heat conduction in
the composite sphere with nonlinear boundary condition of Robin type, i.e., the Dirichlet and
Neumann boundary condition specify the temperature and the heat flow on the boundary,
respectively. However, if the material is immersed in a surrounding medium held at some
temperature, say 7o, then Newton’s law of cooling states that the heat flow through the bound-
ary of the domain is proportional to the temperature difference between the two mediums.
This results into a Robin boundary condition. Specifically, let us consider a two-layer sphere
that consist of the first layer in 0 < r < r| and the second layer in r; < r < R. The
two layers are in perfect thermal contact at r = ry. Let 1, 2 € R, k > 0 be the thermal
conductivity and a1, oy > 0 be the thermal diffusivities of the first and the second layer,
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respectively. The temperature distributions in the first and the second layer, denoted by #1 and
uy, respectively, satisfy the following conditions in the two domains D := {r|0 < r < r}
and D, :={r|ri <r < R}:

e In the first layer D;:

Dly‘ul(r,t):oq(%aal#(r t)—i-a“‘( )), 0<r<ry,t>0,

ur (0,1) =9 @), 1 >0, ()
%1 0,1) =0, t> 0.
e In the second layer D5:
DPuy (r,t) = ap (%35—;2 (r, 1)+ 8;”22 (r, t)) , r<r<Rt>0,
uy (ri,t) =uy (r1, 1), t>0, 2)

My (r1. 1) + k%2 (1) = iy (1. 0 + k5 (r1, 1), 1> 0,
and subject to homogeneous the initial conditions:
uy (r,0) =ur(r,0), 0<r<R. 3)
Here, Dty " is the Caputo fractional of order y; (0 < y; < 1,i = 1, 2) which is defined by
s gs 0 0 < 9y < 1,

1
Dliu(r.t) = T=y) JO (t—=s)i 4)
u,(r,t), yizl’

and g is the exact data which is supposed to belong to L2 (0, 00). Thus, it is natural to assume
Juj  dup

that for any fixed r € [0, R], the temperature distribution u1, u and their derivatives ', 52
belong to L (0, o). The inverse Cauchy problem which will be investigated in the current
paper is the problem of determining the temperature distribution u; and the flux distribution
03”2 in the second layer from the measured data ¢ given in the first layer and the insulated
condition at the accessible boundary r = 0.

When y; = y» = landn; = n» = 0, the problem reduces to the one investigated in Xiong
et al. (2016). The authors used the modified version of the classical Tikhonov regularization
method achieving Holder order convergence with respect to the L2-norm for the temperature
distribution and heat flux. As mentioned in Liu and Yamamoto (2010), the Caputo fractional
derivatives for 0 < ; < 1 at time ¢ uses all the information about classical derivative f’
for (0, t), which is called the memory effect of the fractional derivatives. As a result, the
fractional-order model are usually more adequate than the integer-order model. Recently,
researchers are very interested in the fractional calculus because of the more and more
convincing applications of fractional calculus in the real world. Here, with the appearance
of the fractional derivative in time and the nonlinear boundary condition, the investigated
problem is much more difficulty because of the non-locality in the fractional derivative and
the ill-posedness of the problem. Here, I apply the Fourier technique to overcome the non-
locality of the fractional derivative and a truncation-type regularization method to deal with
the ill-posedness of the problem based on a priori the temperature distribution.

The organization of the paper: In Sect. 2, I present some auxiliary results which will be
needed to prove the main results in next sections. Section 4 is devoted to the determination and
L?-error analysis of the temperature distribution. The determination and L?-error analysis of
the heat flux distribution is presented in Sect. 5. Finally, I end up the paper with a concluding
remark to summarize the achievements related to the investigated problem.
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2 Some auxiliary results

Throughout this paper, I extend all the functions to the whole line —co < ¢ < oo by zero
extension if necessary. I also assume that the measure data ¢ contains error that gives ¢°
satisfying

[¢° —o| <3, )

where the constant § € (0, 1) represent a bound on the measurement error and ||-|| denotes
the L%-norm. Assume that there exists a positive constant E so that the following a-priori
bound exists for the solution u, of the problem (2):

1
2
luz (R, Ml grwy = (/R (1+&%)" 1@ (R,E)|2d5> <E, (6)
where p > 0. Under the variable transformations v (r, t) = ruy (r, t) the system (1) becomes

2
D;”v(r,t)=oelgT§(r,t), 0<r<r,t>0,

v(0,1) =0, t >0, @
DO.n=9@®, t>0.
Let
-~ 1 *© —i&t
g(s>=ﬁfmg<r)e i

be the Fourier transform of the function g € L? (R). By applying Fourier transform to both
sides of (7) with respect to 7, one has

GEYV(r,t) =10 (r, 1), O<r <ry,

v(0,§) =0, ®
v 0,8 =9®.

where & is the variable of Fourier transform on 7. Then the solution v of problem (8) in the
frequency domain for 0 < r < ry:

@@”n a
r
o (i&)”

v (r, &) = sinh P @), )]
where

Y1

T (1 +isign @),

Vo = ’i

and sign (£) is the signum function of £. The solution v be recovered from using the inverse
Fourier transform on v. From (9), it deduces that

vy (r, &) = cosh " r|e@).
Voo
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Similarly, under the transformation w (r, t) = ru» (r, t) the system (2) becomes
Dyzu)(r t)—ozz Y (r,1), O<r<ry,t >0,
w(rl,t)_v(rl,t), t >0, (10)
mw (1, 1) + k92 (1) = v (r, 1) k3L (1), 1> 0.
Applying Fourier transform to (10) with respect to ¢, we have
(&)W (r 1) = oWy, (r, 1), ry<r <R,

w(r, &) =v(r1,%), (11)
mw (ry, &) + kW, (r, &) = 0o (r1, §) + kv, (1, §) .

r ar

D& =A060E = (A 0.6 +A 0 6)+A0.6)PE). (12)

We already had u; (r, &) = 1% w (r, &) and % % Wk r—zw (r, &). It follows that

W =Xr.H3E =X .H+X0.H+X30.6)PE).  (13)
where
AL &) = ‘/:;'T[(l(;';yl = (lg)yl sinh /W ——
Ay r8) = \/% sinh ("5)” ) 09”( )
A3 (r§) = ﬁ cosh (’W‘ ) <5>”( o).

o~ Y2

X (r &) = f('“ ,/ ,/(5) r—rm].
(15)]/1

= (S)V1 (E)y2

%5 (r, ./ i,/ -m .

2(r,6) = me (r—rp)

X530, 8) = fcosh /(’g)yl /(g)y2 —r) |- %Z(r,é).

The solution u, and heat flux 83"2 can be recovered from taking the inverse Fourier transforms

on (12) and (13). Next, we have the following auxiliary results.

Lemma 2.1 (Xiong et al. 2016) For x > 0 and n € C. Then we have the following estimates.

1. [sinh (nx)|, [cosh (nx)| < e,
2 sinh(nx)
' n

3. |sinh n|, |[coshn| > sinh |R ()] .

< xe|'7|x’

Lemma 2.2 Forr € (r1, Rl and & € R. Then, we have the following estimates.
L |A, &) < e,
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2. |X(r,8)| <1 (§)e¥rd),

where
r o r—ry,..n
V(r,§)=——=I§72 + &7,
Jo Joo
rine — nal
] = 2 + e
: k
Y2
_ Im—m|  14+ca 1§17
c = + + .
1(8) X p %
Proof (1) For A (r, &). In view of Lemma 2.1, we obtain that
| | sinh < (ii)lyl r1> sinh ( 7(1‘%;)21’2 (r — r1)>
-~ n—n
A(r, <
Aol = rk &) /&)
o] a)
@&n
1 s1nh< o r1> (i5)”
+ - cosh r—ry)
r @en o
aj
sinh (/92 (- — )
! (i§)" e
+ — [cosh
r oy (&
V o
ren = ml\ Ll e
< (2 + . ) ever Ve = eV,

(2) For X (r, £). By applying Lemma 2.1 again, we get that

. ([E)Vl
o 30 (V75n) (&)
cosh —— (r—=r)
[ G o2
(221

n sinh <‘/ (ii)lyl r1>

S [n1
|X (r, )] < oy

£V

+ €1 sinh &) (r—r1)

riy/o2 (UL o)
a

1 FAY4! i ENY2 1 ~

+ — |cosh | .| ) r1 || |cosh (@€ r—r)||+—|A@. 5
r o] o n
m—ml | T4er | 517\ 2y

< ( n—mn I 1 4 )eﬂlg + 75 161 =7 (g)ewr,s).
k ri Jao

The proof is completed.
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Lemma 2.3 Forr € (r1, R] and |&| > 1. Then we have the following estimates.
LA, 6)] = —2=e®09),

&1z .
2. X (r,8)| < c3lE| Te®0D),

where

y~ =min{y, y2},

. 0, ify1 = v,
2=y, Iy <y
2 oo —
o f(f_}_f_i_«/lzlkm nzl)’

272 Jar o Jed ln =l o
ca=—|\1+=+-——]+ =,
r Joo k r

c1><r,5)=%cos( 7 ) 1617+ cos (T2 le1 7.
Proof (1) For A (r, £). We denote

é

b2 b2
ai=a() = |i|1 ricos(Zn). @a=a® = |i|1 risin (1) sien ©).
[1&172 _ _
b)) =b(r, &) = |i|2 (r—chos(%yg), b(r):=b(r,§&)

Y2
'i'z r — r1) sin (%yg) sign (&) .

It is easy to see that

\/(If)yl \/|§|V‘ 1<COS(4 )+zsm( )slgn($)>
(lé%)y2 )_\/W r—rl) cos Vz)—i—tsm( y2>§1gn($))

Ry < LB —ml | (lé)y‘ (5)” (r_m)

T it nh )

-2

+ \/olel sinh @ ;;:)VI G )yz r—ry)

rilél?

+ JOTZVZ cosh (lg)yl hi,f (lg)yz r—r)
ril§l®

\/01101 In — Uzl}
riklg| T

Therefore

rik|&|

sinh (a + ia) sinh (b (r)+ib (r)
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+ ‘ﬁ |sinh (a + i@) cosh (b (r) +ib (r))|
rlglT

+ L |cosh (a + ia) sinh (b (r) +ib (r))].
rlElT

By applying the following formulas

sinh (x +iy) =sinhxcosy +icoshxsiny forallx,y e R,
cosh (x +iy) =coshxcosy +isinhxsiny forallx,yeR,

and Lemma 2.1, we conclude that

(«ﬁ-ﬁ-f-ﬁ- A/ @1a2 |771 712|)ea+b(r) _ C2y_ 208
1§12

|A(r,6)| <
r1|$|

(2) For X (r, &). By the same arguments as the above, we have

R0.6)| < f|m ml | (ii)w o) cosn [ /€ SW T
1
rl\\/ﬁ»mn * |sinh (ii:yl rq | sinh ,(é:)yz (r—rp)
= D eosn [ 997 Y cosn [ 1997 — ) || 1 2000
1 a1 a2 r

§<m< LN JEn - n2|>+62>|s|7;‘ed><r,s>
r ﬁ k 1

O(r.8)

=l Te
The proof is completed.
Lemma 2.4 Forr € (r;, R]. Then we have

C4

ISI

A, &)= e®S forall |&] > Omax ()
in which

Yy =max{y, 1y},

o)

[N}
25

32R Jag
(), ifr =,

Omax (r) = 0, (r), lf)/1>]/2,
03 (r), ify1 <y,

Omax := Omax (R) .
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where
2 2 2
4/a11n2 v 4/0[21112 v 324/ot1052|r]1 —772| 4
61 (r) = max — | - , )
r1 cos (ZV) (r —ry) cos (ZV) k(A/otl +4/a2)
2 2
32/ = NG — n
0, (r) = max | Wmax., it R , |7]1 n2| " ,
Jan k
2 2
32 ax\ 2 (2 /ar |n — n2l \ 0
93 (l’) = max | Wmax; ( \/Ol>I2> s < Zl 12 ) ] s

with

i 2
®max (r) = max _Vorln2 7 7 JoazIn2 2 |
2ri cos (Zy1) 2(r —ri)cos (512)

®max ‘= Omax (R) .
Proof We denote

By (r) := sinh (a + ia) cosh (b (r) + ib (r)) .
By (r) := cosh (a + ia) sinh (b (r) + ib (r))
Bs (r) := sinh (a + i@) sinh (b (r) + ib (1)) .

It is not difficult to verify that

B (r) = % (sinh(a+b@r)+i(@+b(@r))) +sinh(a—b@)+i(@—>br)))).
By (r) = % (sinh(@+b(r)+i(@+0b(r))) +sinh(—a+b(r)+i(—a+b(r)))).
B3 (r) = % (cosh(a+b(r)+i(@+b(r)))—cosh(a—b(r)+i(a—>b)))).

Then we have

Jar

yt I\/msmh <\/(ii7r1>cos (\/W(r—rl)>
RIE] 2 1
f\/mc h(\/W ) 'h( aer (r—r1)>‘
Ve m — ml sinh( (ii)yl r])Slnh (JW( —r) H
1

ky/ Ggyritrz—rt

‘\/my* B <r>+—\/<us>y+ 7B, (r >‘ el —ml gl
k‘/(,g)nﬂ/z y+

|Ar, &) =

R\SI 2

Between y; and y, there are three cases:

@ Springer f DMAC



292  Page 10 of 21 T.N. Luan

In case 1: y; = y» =: y it follows that

RE f{‘(l f)smh(a—f—b(r)—f—i(ﬁ—f—g(r)))

2R|E]2
\/\/g sinh (—a +b(r)+i (—E

45 (r)))‘

+sinh(a—b(r)+i(ﬁ—5(”))) +

‘/7“71 n2| (|Cosh(a+b(r)+i(5+5(”)))’ + }cosh(a —b(r)+i (a—b(r)))‘)}
k|$|2

NG} {(1 + %) [sinh (a +b () +i (@+5())]

T 2RE|E
ﬁ [sinh (—a +b () +i (=@ +b())]

—[sinh (a = b () +i (@=b1"))| -

\ﬁk||m| 2| ]cosh(a—i—b(r)-i—i(a-f-b(”)))’+}COSh("_b(r)"‘i(a_b(r)))‘)}'
g%

By applying Lemma 2.1, we obtain that

|A( E)| 4;/|;| {(1 + ﬁ) (ea+b(r) _ ed—b(r) _ g—a+b(r) _ e—a—b(r))
1

4V |T]1 a+b(r)}
klg|®

2 2
Duet0|$|2max(( Veiin2 )y,( yezln2 )y},onehas

ricos(Zy) (r=r)cos(%y)

R e B B

2RIE|? NG klg|?

2
. 32 /ajanlni—ml\v .
On the other hand, since |§| > (7k(ﬁ+\/072) ) it follows that

A8 = ‘F<1+‘/OT2) ! <I><ré>>07 O(r.8)

32R VOV HEx

In case 2: y1 > y». By the same arguments the above, we obtain the following sequential
results
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N eV V2
o)=L !glayl “ Jeosh ( @ rl) ‘sinh(@@—n))‘
Rig|?

sinh( Wu)‘cosh( aer (r—r ))‘
Voo \

V@l = Smh( [om rl)‘smh< laon _r))}
kgl T “

v"ll <4v (ea _ e—a) (eb(r) _ e—b(r)) _eath(n) _ Vo2 |’11 —n| a+b(r)>
 RIE| 7 \4ve k|| #
Vaad! Vo | |V1;V2 __y*® [ —ml\ o¢e
= U\ 16 /a7 § n ¢
RI§|2 k&2
4/01}1/ (1 _ VL) |771y2_ 712) eq’(’f) > ,\/OllyI ecp(r_g) > C4+ eq)(r‘f).
" RIEI? kgl T 2RIE| T ks

In case 3: y; < y». By the same the arguments the above, we get the following sequential
results

A0 > L {m”?l 'sinh (,/(’W1 r1>Hcosh (,/(S)y r— 1>>‘
RIE|T “1

[E)Y
Vo sh(/(lg)lrl)‘sinh</(g) r—r ))‘
Jor o)
— Y4 i
_ /@I —ml Sinh( (i€) 1r1) nh( [ae)” (r—r1)>}
kig|2 “ 2
N R [ I Ty
RIS Ve Kig) >
Zﬁ;(l wzn_m_ﬁmym)ew
Rig1 7 \16 VET et
Vo («/"72«/‘72|”1—’72|)ed><r,s>> VO 008 L 4 008
= 2\ Jar 7L = )
R|§| 2 ! kl&12 2R|E] 2 H z
The proof is completed. O

3 The ill-posedness

In this section, I prove the ill-posedness of the problem (1)—(2). More precisely, we have the
following theorem.

Theorem 3.1 The problem (2) is ill-posed in the Hadamard sense with respect to the L*-norm.

Proof The following example demonstrates the ill-posedness of (2). For any n € N with
n > Omax (r). Wedenote Q,, :={EeR;n<&<n+1},letg, € L? (R) be the measured
data, such that

e+ 1L ifeeq,,

PE=150. " ifseran.
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By applying Parseval’s identity, it follows that

1
low — oll = 1 — 71l = (/Q 24©) =10 wn oo
Let uy and uy, be two solutions of (2) corresponding to the data ¢ and ¢, respectively, that
is
D H=ACHPE and @y (r,§) = A0, 5 G ().
By Parseval’s identity and Lemma 2.4, it follows that
luan (re ) =z ()P = N2 () = T2 ()P = niz /:H A, &) Pde

2 ntl 2006 2 et 2
- 14/ e g > A f 20016 g > 4 21
n n

~ n2 gy T a2yt n2+y
This shows that
e<I>(r1,n)
lim |uo, (r,) —us (r,-)|| > c4 lim = +400.
Jm e () = w2 (79 2 e lim = =+
n 2
The proof is finished. O

4 Determination of the temperature distribution

In this section, a regularization scheme for ill-posed problem (2) is provided. In fact, the

2l )
instability of solution caused by exponentially increasing in the term e/é/ > | elé1% as |£] —
oo. Therefore, to obtain the stability solution, the natural idea arising is to cutoff the high
frequency term in solution. The selected cutoff point is required to satisfy the following
criterion:

e It makes the regularized solution to maintain a good approximation to the exact one.
e It makes the regularized solution stable.

Specifically, the regularization solution have Fourier transform as follows:
W gy (1. 6) = A, 6) 9 &) xp) ©). (14)

where f (8) plays the role as the regularization parameter to be defined later, xg(s5) denotes
the characteristic function on the interval [—g8 (§) , 8 (6)], that is

L =g ==,
0, 1&5l>B().

Then, we have regularized solution of problem (2):

xpe) () = [

1 n =5 i
G 0 = = /‘glw) A 8@ @) de. (15)

Theorem 4.1 (Stability of the regularized solution) Let ”g,,s(a) and us g(s) be two regular-

ized solution of problem (2) corresponding to the data ¢° and ¢, respectively, such that
||(p‘s —@ || < 8. Then we have the following stable estimate:

5 (R Fm) e2(.B(8)
H”z,ﬂ(s) (r,-) —u2pe) (r,) H <[|cre"\"'m) 40—+ ] 6, (16)

BEN'T
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2
where O max = max {1, (L),)) " ,Gmax} .

ricos(Fyi

Proof By applying Parseval’sidentity, Lemmas 2.2 and 2.3, it follows the following sequential
results:

S 2 -~ -~ 2
H’/lz,ﬂ(a) r,)— uz g(s) r, ) H = Huzyﬂ((s) (r,)— uz g(s) ) H

-~ -~ 2
- [ ReolP e -pe| e

€1=Omax

—~ -~ 2
+f Ao o0 © -9 d
Omax <|§|=B(3)

-~ 2
=i / MOl ) -9 d
|§1<Omax

Q2006) |

2
+ 2/ "o @) g de
“ Omax<IE1<BG) |EIY ‘w Y ‘

- R 2
32 ¥ (R-Om) /R v © -5®)| d

, Q2008 R
+ei sup —[Ppe-sefa
£1€@ma.®)] 1] R
- 20(r.8)
cfe”(R*‘)max)(Sz +C% sup e — 2
1€ (@mn.8®)] 1§
Letz = [Eland ® (r, 2) = «/271 cos (%VI)ZVTI + % cos (§72)z % It follows that e\%‘l o _

eZE(r ,2)

— =: f (2). Then we have

, _ezg(r,z) ri (7-[ ) y71+ r—ri (7-[ ) VTz 3
f (Z)—Zy,i_H Y1 COos Z)’l Z V2 COos 43/2 4 14

7V

N

2%(r.2) r1 T bl
> — cos | — z2 —y .
= S (e (Gn) e - 7)
20(r.2)

From z = |£] > Omax > (%) " we deduce that f (z) > eyﬁ (ri—y7)=0.1t
follows that

D ey = P il (Fmax. B (®)].
— < ( )= — ora € max»
£ B (5))

This means that

262‘I>(r,}3(5)) )
C2 7_6
(B(8))”

Huz pe) () —u2,p0) (r )H < c}e?¥ (ROmax) 52

Therefore

5 (i) , . SO
H”z,ﬁ(a) (r,) —u2pe) (r, )H < [cre¥®Om) 4 c—— 8.
B©G) ™

The proof is finished. O
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Theorem 4.2 Let uy be the solution of problem (2) and ug 8(6) be the regularized solution
given by (15) and the measured data ¢° satisfy (5). If the exact solution us satisfies (6) for

p > % (y+ — y’) . The regularization parameter B (§) be selected by

2

(~)(1R) In %) " ifyi >y,

where

r1 b r—ri b3
O) = T cos (Zyl) + % cos <Zy2) ,

4 2p+y) - 123
E\=E+54§|¢ ( " ) + 20 (Omax) 2

)

_ pan
Ey = E + e 0ma)

Then, for every r € (r1, R], we obtain a convergence estimate:

_2p+

o) | 60 _n

di (1) = 1% (ROns) s 4 (0 (R) W ES™ ®W(mgﬁ n

OR)=O(r)

1_2ptr

where

F

— . 2pty1
¢5 = max {cle\y(R'G"‘"X), c+ c—2(2(9 (R))( 7 1)} ,
4

yo = %)

Proof Using triangle inequality and Parseval’s equality, we obtain that

dy () = i sy () =2 ()

7
1

dy (r) < Hug,ﬂ((g) (r,) —uzpe) (r, )H + ||ﬁ2,ﬂ<a) (r,) —up (r, )H .

(1) For Hug 8(6) (r,-) —u2,p@ (r, )H In view of Theorem 4.1, one has

O(r,B(S
(R Tm) RINI0)

Hug’ﬁ((g) (r, ) —u2,pe (r, )H <cie S+

BENT

@ Springer f bMA

_90) . ew =\ (1-221) 8@
q<a+53my wmon%)( 7 )(), if n <

c M*I s 1;*2 E; ”1 ;
+2@OR) T EQ@) e® (InE) iy s,

a7

(18)

19)

(20)
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(2) For |24 (r,-) — 2 (r, ). Using Lemmas 2.3, 2.4 and (6), we obtain the following
sequential results

|2, 86) (r, ) =2 (r, )|

1
- (/IEI>/3(5) (14827

1 |A@,)

S su 7]) —_—
=) 1617 1A (R, &)

1 1 . . %
<2 swp : @O T g
C4 1g1>p0) |g]2CrrrT=rT)

~ > 3
A(r.§) NI PORNT:
e 1+ A(R, d
RO (1+&°) AR 6P| E)

luz (R, )l e w) 21

2

ca(B (8))2@rHy™—r")

IA

7
©@M—-ORNBEN T |

Between y; and y» there are two cases.
In case 1: y; < y». Using (17), we obtain that

_2pty

—\ (1
_ _on o E ( 72 )@(R)
”ug’ﬁ@) (r,-) —uzpe) (1, )H < cle\p(R’Gm“*)é + czElo(R) si-om (ln 3

’

(22)
o . (2;)+y| 71) @(18(—1;;)@)
O(r e 2 o
~ —~ &) =5 B0 E,
”uz,ﬂ(a) (r’ .) —up (r, )H < l(z —— )El()(R)gl O(R) <1n R
ca(B () 2Crnn
(23)

Now, we evaluate for the element 8 (§). We claim that

E 2 E
=l s o (ZPEN g (1 2L (24)
1) 2 1)
Leta = 4 (2’7)/% - 1) and y = In % > e%. Rather than solving (24), it is equivalent to

solve the inequality & (y) = y — %ln (y) > 0fora > 0,y > e“. In fact, from " (y) =

1— z‘)‘—y >1-— ﬁ > 0, it follows that & (y) > h (%) = e* — % > 0. Therefore, the estimate

(24) holds. Therefore
_ 2
po)= (o (wEL))"
T \20(R) ) '

2p+y) O(r) o

@260 (. ) =2 (r, )| < %(2@ (R))(T”)fl(‘“) sl o

This shows that

1— 2t ) a(r)

£ (1-2530) &
8) (25)

;v
=
|

Gathering (19), (22) and (25), we obtain the conclusion (18).
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In case 2: y; > y». Using (20), (21) and (17), we obtain that

IR E,\ 1
H"Z p® () — u2.pe) (r, )H < c1e"BIm)s 1 ¢y (0 (R 7 EY™ 61750 (ln 2) :

+y2 BO(R) (;/7(2r) Ez — 7
l@2p6) (o) =02 )| <—(®(R>> n T E®G () em In == L@

Combining (19), (26) and (27), we get the conclusion (18).
The proof is finished. o

Remark 4.1 1If y; = y» = 1 and n; = np = 0, then

_2pO(r)

&0 | _em E, O(R)
”g,ﬁ(S) r,)—uy(r,-) H <cs |8+ EI@(R)B “o® | In > forall p > 0.

This result is an extension for Theorem 3.1 in Xiong et al. (2016).

5 Determination of the heat flux distribution

Based on idea cut-off as Sect. 4, we have Fourier transform of regularized heat flux solution
of problem (2) as follows:
~5
)

o =X (56" ) xgp (©). (28)

where f (8) plays the role as the regularization parameter to be defined later, Xg(s) denotes

the characteristic function on the interval [—B ), (8)]. Then we have regularized heat
flux solution of problem (2):

45 5 Do

ar ~ V2r <o

X (r, &) ¢b (£) 6 e, (29)

a —
Theorem 5.1 (Stability of the regularized heat flux solution) Let 2 ‘3 D and % be two
regularized heat flux solution of problem (2) corresponding to the data @ and @, respectively,
such that ”go‘s -9 H < 8. Then we have the following stable estimate:

Wl () duw ) _ _ ot
2.;3;5) _ uz,ﬁ;a) (r,-) < <c] (5max) ew(R,e,m) +63e®(’)(ﬂ(5)) 2 )5!
r r

(30)
where

. max {1, Omax} » ify1 = y2,
Bmax = 2 2
max max {ZVZ‘VI 5 (%) " somax} s l,fyl < 2.

ricos(Fyi
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Proof Using Parseval’s identity, Lemmas 2.2 and 2.3, we obtain that
(5) (r ) 3u2’g(8) (r, )
ar ar

~ -~ 2
- ReoPlPe-oe)| e
1€ 1=<Omax

-~ 2|5 . 2
+[ Resl@©-06)| e
Omax <|§|<B(8)

=2} @) |

|&]<Omax

* -~ . 2
L N e OO
Omax <|§1=p(8)

-~ 2
V0| ) - 56 ae

< E% (gmax)ezw(ze,emax)az + Cg sup g|7* 200652,
1€ (Pmax.B(9)]

This implies that

O, 5y ) s ()

ar ar

=c (é\max) eV (R ) 5 +c3 sup IélyTeq’(”E)S,
1£1€ (Pmax. B(3)]

Between y; and y; there are two cases:
In case 1: y1 > y». Itis easy to see that

GIT

u (ry)  9m, = L . A _rF
2,60 B ) < (@1 (Brnax) ¥ FPns) 4 300 F®) 7 5
or or -

In case 2: y; < y». It is known that

T TRy TG

ar ar

o~

<) Onar) e ROm)s o3 sup 15772005,
1£1€ (Bimax. B (3)]

, ~ 2 oy \wl .
Since |£] > Opax > max {2V2 L, (W) , it follows that

2
A cos(Em)lel T+ cos(Fra)ie 2

-
_|,§ 2
2= 2
&)z +J’T£Tcos(%y1)|s| + 5k cos(Fr2) 612

nu
1§12

<e

y+

— n Y_
< ONFE®) T _ 0 (E®) T

This shows that

o = (r) 3Ty =5, (- - oo
2/3;8) _ Mz,ﬁ(;) (r,-) < <Cl (é\max) e\p(R,emax) +C3e®(r)(ﬂ(8)) 2 )8.
r r

The proof is finished. O

du )
Theorem 5.2 Let 83”2 be the heat flux solution of problem (2) and 2 ﬂ 9 pe the regularized

solution given by (29) and the measured data ¢° satisfy (5). If the exact solution u» satisfies
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(6) for p > ; (y+ + y*) . The regularization parameter B (8) be selected by
_ 5 _ 2
1 + 2 .
(ot (5 = (2252 —2) (0 52))) ™. ifn <
- O(R ( s 3 , 1 =2,
CIOES DRI 4 31
(ot (5= (22 =) (mE)))". irn= .
in which
af 22tr_, R y
E3 = FE + S ee ( 2 ) + ez®(R)(9max)%
= (E) | ey @) F
Es4=E+45|¢° + e20B Ona) 7 )
Then for every r € (r1, R], we obtain a convergence estimate:
CIG) o) o 2 2p+y Eé)(r)
c6 (5 +E ™ 8" 0 (In %)( Rk : ify <,
A ~ _o0 . em =\ (1-2)ou
dy(r) < Z1 (emax) eV (ROmax) § + QE?”SFW (ln %)< yl)()(R) (32)
O(R)—O(r) 2
c3 By % Eq4 l_ﬁ :
+2ee R EGE) e (Inf) T 7>
where
s
by | "m0 ") e
ar ar ’
A —~ 2p+y; _
s =max{a B ") 5+ % 20 ()5 2)},
C4
n
_( n Q) 7
OETIAN
Proof By triangle inequality and Parseval’s equality, we obtain that
du’ r,)  Bu, 7 (1, ) Ay 55 (ry)  Om .
& (r) < | —2FP® _ "0 4[| 220 _dm ) (33)
ar ar ar ar

oud _ (r,") 17— -
(1) For H 2EO uz’ﬁg‘? “I 1 In view of Theorem 5.1, one has

8
s g ) duaps ) ~
ar ar
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Ny Foy 1) dia(r.o) ; i

(2) For P - =5 ” Using Lemmas 2.3, 2.4 and (6), we obtain that

374\2,3(5) (r,-) _ our (r,-)

ar
1 | Xee)
= = (1+&)7|AR, &)@ (5)| ds
</|$|>ﬂ(8) (1+&)" AR, &) 1A i
L Xeo ’ luz (R. )] (35)
= SuUp l=———\|Iu2 s ) HP(R)
<9 ! c@M-6R)E T §

p 1 *
4 1g1>pes) 1E12CP7Y oY)

»
103 O—-ORN(B®) T f
— Lop—y+_y*
caB ()2
Between y; and y» there are two cases:

In c%se 1: 1 < y». Using (31), we obtain that

“E® T g ()

ar ar

IA

R O(r) 6w
<ci (emax) W(R 9max)5 + U&E o 5 Ol

o ~ o — B
iy By ) iy (r, ) H e S 1- 90 ( Es
3 9 - Lapin-2
r r C4(ﬂ (5))2( P+y1—2v2)

=) _ N
From E3 > §e® it follows that 8 (§) > ( @1( ) <ln T3)) )

A~ . 2p+y] Q(r) ® —

Wy Fisy) ) oy (r,- ( ! —2),
28077 000G gy 72 ) EER 5 em) (1n £3
ar ar cq )

Gathering (33), (36) and (38), we conclude the conclusion (32).
In case 2: y; > y». In view of (34) and (35), one has

$
auZ,B(é) (r, ) _ 3”2,3(5) (I’, )

ar ar
‘ Oty sy (1) 9 (r ) H I (@)(r)—@)(R))(E(&))VTZ e
ar

}3 ((S)) 2(2[7 v1)

that

c3 2p -1 y E4
<2 QO®)YTT E@@®) O (1n =%
ar ar cq )

Combining (33), (39) and (40), we get the conclusion (32).
The proof is finished.

H

aud _ (r,- = . O(r)
250 ") Mg | () ¥ (R 9mdx),g+QEO(R)51—(é') 1n E4
ar ar -
ORI-O() 2
3ty sy () () 2 7

<2p+1/1

his shows that
_2ptn

7L
< @1 (Omax) ¥ Omax) § 4 ¢3e@NE®) 2 5

_ 4(22 - _ 2
Since Fa > 5= it follows that B(5) > (m (m Es )) " By using (31), we obtain
[C]

o

(36)
O(R)—O(r)
*2) O(R) :

(37

(38)

(39)

(40)

[m}
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Remark 5.1 If yy = y» = 1 and n; = ny = 0, then

ud - () . b0 e [ E o0 1
z,ﬁéa) _ uza(r’ ) <co[5+EI®s' 6w [1n =2 forall p > -
r r

This result is an extension for Theorem 3.2 in Xiong et al. (2016).

6 Concluding remark

In the current paper, I study an inverse boundary problem for the time-fractional diffusion
equation in two layers spherical domain with a nonlinear boundary condition of Robin-type.
I first prove the ill-posedness of the problem. Then, I proposed a truncation-type regularized
solutions for both the temperature and the heat flux. This method yields a Holder-type error
with respect to the LZ-norm.

Acknowledgements I am grateful to the anonymous reviewers for their valuable suggestions to make my
manuscript more completely.
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